Skip navigation

Tag Archives: vpn

As a part of my job at Cisco I’ve been looking into Zscaler and their offerings.  It started me thinking back to the early days of remote access, and I figured it would make a good topic for Netstalgia.

I wrote in the past about how bulletin board systems (BBSs) work, and in another article I resurrected my old BBS in an Apple II emulator.  In a nutshell, a computer with a BBS set up had a modem on it and users dialed in using their own modem over dial-up phone lines.  I’m not sure how many readers are young and don’t remember modems, and how many are dinosaurs like me, but as a reminder, modems connect computers to phone lines.  One modem is set to answer any call that comes in, and waits.  Then another user with a modem inputs the phone number of the other end into his software.  His modem dials out, the phone rings, and the other modem answers with a carrier tone.  Then the dialer responds and after some negotiation on the line, a connection is established and data is sent.

Now in my first job, at a small company in Marin California in the mid-1990’s, we had one computer set up as a dedicated remote access server.  It had a single modem with a single phone line, and ran Apple Remote Access server, since we were a Mac shop.  We only had one user with a laptop, the CEO, so when he traveled he would dial-in and be able to access basic functions like email and our file server.  There was no Internet access back then.

When I moved on to a consulting company, I did a few more industrial set ups.  Usually these involved remote access servers that were comprised of a bunch of modems and a LAN port.  The remote access server would accept a bunch of phone lines and then provide TCP/IP or AppleTalk connectivity to the network.  By this time users had Internet connectivity.  The Shiva LanRover is one example of this sort of device.

Shiva LANRover

When I worked at the San Francisco Chronicle, we had an Ascend Max which served this purpose.  The Max had two DS3 lines plugged into it.  It was the first time I had seen a DS3, and I remember being excited to learn the phone company could deliver a circuit over coax.  (It actually entered the building on fiber and went over coax from the MPOE.)  The DS3 was an ISDN PRI, with 24 dial-in phone lines multiplexed over a single digital circuit.  It took me months to find someone who had the password to the Max, and when I finally got in I found out that the second DS3 was unconfigured.  Users had been complaining about busy signals and all I had to do was change a few menu settings.

Ascend Max

Remote access dial-up was heavily used at the Chronicle.  Reporters filed their stories via modem.  VPN was just coming out, and I decided to replace the dial-up with VPN + dial-up.  A company called Fiberlink provided a dialer with a vast database of local Internet dial-up lines from a variety of carriers they contracted with.  Our users would pick a local phone line and then dial into it.  They then launched our Nortel VPN client to establish connectivity.  This saved us a fortune on 800-number charges, but our users hated it.  As a good senior guy, I did the initial design and left implementation to a junior guy.  I’m amazed he still talks to me.  (And he’s not junior anymore!)

Despite being a long-time Cisco guy, I never touched the Cisco remote access stuff.  I did use 2500-series routers with serial ports as terminal servers in the lab, but I never connected modems to them.  Still, when I passed my CCNP, one exam covered remote access and I needed to know a lot about modems.

Nowadays I rarely log into VPN.  Most systems I need to access can authenticate through our Zero Trust/SSO system without the need for a connection to Cisco’s network.  We’ve come a long way since the days of dial-up.  And while I said I missed wiring in another post, I sure don’t miss modem tones!

 

When I worked for the Gold partner I generally serviced clients in the San Francisco Bay Area, but because we were a national partner I was occasionally called to other locations around the country.  Being a double CCIE who had worked in TAC, I had a unique skill set among our engineers, which was often demanded by other field offices.

One day my boss called me and told me he needed my help with a customer out of Des Plaines, Illinois.  The company was a manufacturer of fuses.  They were experiencing a network meltdown and needed troubleshooting help.  Great, I thought, I left TAC and came here precisely to get out of this sort of thing.  I liked doing sales calls and new installations, not fixing buggy messes.

I was assigned to the customer on a Monday and was immediately pulled into what we often call a “shit show”.  (Pardon the language.)  The customer had a large international MPLS network with VPN backup.  Several of the sites were experiencing performance issues.  Sites were unable to perform manufacturing and the previous CIO had been fired.  The interim CIO was an ex-military person who seemed to think he was George S. Patton.  He was scheduling calls from early in the morning until late at night, status updates, live troubleshooting sessions, and pow wows with TAC.

Meanwhile, I was starting to feel ill.  Not because of the case, just sick to my stomach.  I didn’t think much of it at first, but it started to go downhill fast.  Luckily I was working from home due to the crazy hours.

But not for long.  The CIO had set up a troubleshooting session in the middle of the night Saturday, into Sunday morning.  He got my boss and me on the phone and insisted I come to Des Plains that weekend, in person.  We argued every way we could that I could be just as productive remotely, but Patton was having none of it.  “If this is your best guy,” he said to my boss, “you need to have him on a plane and out here in person.  Otherwise we can take our business somewhere else.”  Not only was it the weekend, and not only did I feel ill, it was also Memorial Day weekend.  My brother, who actually was (and is) in the Army was paying a rare visit to the Bay Area.  There was no sympathy from the customer, and soon I was booking my ticket to Illinois.  The local account executive booked me a car with GPS and promised to meet me at the airport.  Keep in mind, this was before smartphones, and so you needed to rent a car with a built-in GPS unit if you wanted to get around without maps.

I had a miserable flight and was starting to feel more sick.  There’s nothing worse than being sick to your stomach on a plane.  Being forced to stay in your seat and long lines for tiny bathrooms make for torture.  I ate nothing, and arrived at Chicago airport late.  The account executive was nowhere to be found, and the car he had arranged did not have GPS.  The rental car company didn’t have any GPS-equipped cars, so they provided me with a map and directions.

I drove through Chicago to Des Plaines.  Realizing I needed to eat something, I found a McDonalds, the only thing open at that time, and managed to choke down a half of a quarter pounder.  My stomach felt like burning acid.  I continued my drive, through a bad part of the city.  I was on the right road, but I needed to keep pulling over to check the address.  A couple times I pulled over, swarms of what I assume were drug dealers would approach.  I’d pull out just as they got to the car.

Eventually I made it to the customer site, and met the general.  I was shown in to a conference room with a raised floor right next to the data center, and we began troubleshooting.

It was nothing I couldn’t have aided with remotely.  Basically, the customer had scoped circuits that were too small for the volume of traffic they were carrying.  They were also having degradation problems on the MPLS.   Some of the sites were performing better on VPN backup circuits, so we were switching them to backups.  We performed tests with the telco.  We also looked into an issue with their core Catalyst 6k switch.  When they had done a circuit switch earlier in the week, all traffic on the network had stopped, according to the customer.  The customer had reloaded the core device and traffic came back.  Because there was no crash or crashdump file, and nothing in the logs, I could not explain this event.  It was a smorgasbord of issues, mostly due to bad design and a little due to bad luck.

The troubleshooting window was supposed to end at 2am, but we worked until 6am.  I had a flight to catch and hadn’t slept all night.  The customer wanted me to stick around but I told him to stuff it and left.  I checked in to the hotel room I had booked, slept one hour, checked out, and got on my plane.

On the flight back, I was seated in the middle seat between a two very large people.  I figured out that they were married, but they only spoke Spanish.  I used my rudimentary Spanish to extract myself.  “Yo, a la ventana.  Su esposa, aquí,” I suggested.  They liked the idea.  I moved to the window seat.  When the plane took off, they spread out a massive feast on the tray tables.  I ate a single muffin from Starbucks, one bite at a time, until I landed and went home.

I never determined if it was a norovirus or food poisoning, but I lost twenty pounds in a week.  The customer realized they needed to invest in new circuits, which had a 12-16 week turnaround time.  I think the new CIO got fired as well.  And the account executive never invited me back.  I only wish he had shown up at the airport as I might have thrown up on him.

I thought I’d take  break from Cisco Live to relive some memories in another Netstalgia.

Working in product management at a Cisco business unit, we are constantly talking about the latest and greatest, the cutting edge of technology.  It’s easy to forget how many customers out there are nowhere near the cutting edge.  They’re not near any edge at all.  When I worked at a Gold partner, I got to see all sorts of customer networks in a variety of states.

I remember one customer who ended up spending a lot of money with my company.  They were (and are) a major grocery chain in the United States.  They had reached a point when their network was grinding to a halt, and they needed help.  They had two overworked network engineers running things, and I remember being amused that their company policy required them to wear ties in the office.  This was not a financial company in San Francisco, but a discount grocery chain in a very relaxed part of the East Bay.  Anyways, they had hosts dropping off the network, performance problems, and their mainframe kept losing contact with its default gateway.

Walking in to these kinds of situations, you’re never sure what you might find.  Oftentimes the problems aren’t clear and the customer gets frustrated with their hired gun.  In this case, the very affable in-house engineers were thrilled to have experienced help.  They explained to me that the entire network, a large corporate office and countless stores, were on a single /8 network.  Only the on-site data center had a separate subnet.  Even the remote sites were in the /8!!

It got worse.  The stores were connected to HQ with IPSec VPN, but the hardware VPN devices they were made by a company that no longer existed.  The devices kept failing, and one of the network engineers had a stock of them he had purchased on eBay.  He amazingly was using his electronics skills to perform component-level repairs on the devices, cannibalizing parts from the eBay stash, which enabled him to stretch the stash longer than if he had simply swapped them.

My favorite was the data center.  The mainframe was sending constant pings to its default gateway, which would occasionally drop packets, in which case the mainframe would declare the gateway dead.  I found out that the default gateway was none other than a 2500-series router.

An old 2503 router

Even in 2009, this router was ancient history.  It had an old AUI connector on it which was nearly falling out.  In their 100 Mbps environment, they were limited to 10 Mbps.  I seem to recall it was doing router-on-a-stick on that interface, hairpinning traffic, but I don’t think the 2500 could do subinterfaces, so I may be wrong.  Anyways, the poor little 2500 was being slammed by traffic and dropping packets from time-to-time.

The ubiquitous CentreCOM AUI 10Base-T transceiver

I spent months at the client.  We designed a subnet scheme, renumbered their network, installed ASAs for IPSec, cut over all the stores, and put some high-end switches in the data center.  They were a grateful client, never complained, and I was able to make a genuine improvement in the lives of their users.  Unlike that other client I wrote about before.

I have a lot of bad memories of working for that partner, but one of the most interesting things was walking into so many different customers’ worlds, seeing what they dealt with every day, the mistakes they had made in building their networks, and helping them out by fixing those mistakes.

In my previous post, we saw the theory behind hub-and-spoke VPN. We saw how H/S involves multiple VRFs with cross-importation between them, and we traced the basic flow of a route advertised from one spoke to another.
Next, we are going to look at two options for configuring H/S VPNs. In this post, I will cover using BGP as the PE-CE routing protocol without independent route reflectors. In my next post, I will cover OSPF. Finally, I will return to BGP and examine the issues that come up when we use independent route reflectors with hub and spoke VPN. Read More »